A température donnée, on trouve que les transitions sont du ler ordre pour les petites valeurs du rapport J/U et du 2ème ordre pour les valeurs du rapport J/U voisines de 1. La valeur limite de J/U séparant ces deux domaines augmente avec la température (pour la première transition, elle est égale à 1 pour kT = 0 et à 2,25 pour kT = 8 Δ).

Pour bien se rendre compte de cette différence de comportement, on peut tracer, à une température donnée et pour différentes valeurs de J/U, le nombre total N d'électrons en fonction de $E_{\rm oF}$ au voisinage de la première condition de découplage orbital, comme le montre la figure 20 : la première transition est du ler ordre s'il y a un changement de sens de variation de $E_{\rm oF}$ à la condition de découplage et du 2ème ordre dans le cas contraire.

Nous étudions maintenant en détail le cas intéressant pour l'étude du Cérium : la température critique T_c est petite par rapport à la température T_o , c'est à dire k T_c de l'ordre de quelques Δ , à comparer avec k T_o de l'ordre de 50 à 100 Δ . Cette valeur donnée de $\frac{T_c}{T_o}$ correspond à une valeur donnée de $\frac{J}{U}$ de l'ordre de $\frac{1}{3}$ à $\frac{1}{2}$; nous prenons ici un rapport $\frac{J}{U} = \frac{3}{5}$ ($\frac{J}{\Delta} = 150$ et $\frac{U}{\Delta} = 250$) comme dans le traitement à température nulle. Nous ne discutons en détail que le cas de la première transition qui décrit le passage de la configuration $4f^0$ non magnétique à la configuration $4f^1$ magnétique de spin et d'orbite.

La résolution des équations (64) a été faite numériquement dans ce cas de la même façon qu'à température nulle; on calcule, pour chaque valeur de $E_{\rm oF}$, les nombres d'électrons $n_{\rm mo}$ d'électrons dans les différentes orbitales, le nombre total d'électrons N et le moment magnétique M défini par (26).

La transition du cas non magnétique au cas magnétique reste du ler ordre à basse température, comme à température nulle; cependant, le saut du nombre total N d'électrons diminue quand la température augmente (Figure 21). Ce saut s'annule à la température critique $\mathbf{T}_{\mathbf{C}}$ et la transition est du 2ème ordre au-dessus de $\mathbf{T}_{\mathbf{C}}$. Pour chaque transition du ler ordre, on a comme à température nulle l'égalité des deux aires limitées par la courbe donnant le nombre total N en fonction de \mathbf{E}_{OF} et par la droite de \mathbf{E}_{OF} constant à la transition, car \mathbf{E}_{OF} et N sont variables conjuguées. Il est alors préférable de porter sur la figure 21 la valeur de \mathbf{E}_{OF} en fonction du nombre total N d'électrons, afin d'avoir l'équivalent du diagramme de Clapeyron. Les points $\mathbf{E}'_{\mathbf{n}}$ et $\mathbf{E}''_{\mathbf{n}}$ de chaque côté de la discontinuité de N pour kT= n Δ